
7/26/05 0

LOGO.049

Software Overview

Presented by: Barbara Pfarr

Barbara.B.Pfarr@nasa.gov

Associate Chief, Information Systems Division

Goddard Space Flight Center

Technical Managers Training (TMT)
October 2005

Modified from Presentation by Mike Stark, “Mission Software for Project Managers”

7/26/05 1

LOGO.049

Goals

• Describe the projects and activities of the Information Systems
Division

• Describe best practices for software development

• Provide understanding of software issues

7/26/05 2

LOGO.049

581/Systems Integration &
Engineering
Margaret Caulfield, vacant

582/Flight Software
Elaine Shell, Ray Whitley,
Kequan Luu, Yvonne. Lue

583/Mission Applications
Henry Murray, Scott Green

584/Real-Time Software
Engineering
John Donohue, Ryan Turner

585/Computing
Environments & Technology
Howard Eiserike, Steve Naus

586/Science Data Systems
Tom Flately, Bob Lutz

587/Advanced Data
Management and Analysis
Jim Byrnes

588/Advanced Architectures
& Autonomy
Vacant, Barbie Brown-Medina

Mission directors, ground sys/flight ops
management, sys. eng., flight prep
support, SW eng, Sys I&T, AO prep

End-to-end data systems
engineering of ISC mission
systems development activities.

End-to-end FSW development;
simulation s/w; spacecraft
sustaining engineering

Sys. eng.& implementation, COTS
application, testbeds for concept
proof/prototyping in ops environment

Off-line mission data systems
(e.g., Command man., s/c mission
and science P&S, GN&C, NCC

Real-time ground mission data
systems for I&T and on-orbit ops
(e.g., s/c command & control,
launch and tracking services)

Network manage., business/support
tool develop, WWW applications

Tools and services in support of
information management

Science data systems including
data processing, archival,
distribution, analysis & info man.

Next-gen req. development, testbed for
sys evaluation, prototype products

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Sys. eng & implementation, human-
computer eng., technology evaluations,
concept prototypes, sw eng. methods

Technology R&D focused on space-
ground automation and autonomy
sys, advanced architectures, and
advanced scientific tools and
systems

Embedded spacecraft, instrument
and hardware component
softwares; FSW testbeds

Sys. eng.& implementation, COTS
application, simulators, testbeds for
concept proof/prototyping in ops env.

Sys. eng.& implementation, COTS
application & integration, testbeds,
prototyping

Branch Functional Area/Products Services

589/Wallops System
Software Engineering
Pam Pittman

ISD: End-to-End Information Systems Providers
Joe Hennessy - Chief, Martha Chu, Barbara Pfarr- Associates, Julie Loftis – Assistant for Technology

Mission application prototypes,
including development I&T, sys
engr., software engr. supporting
BPO, RMMO OSB

Provide unique mission software
applications, and project
formulation services

7/26/05 3

LOGO.049

Mission Software: Architecture

Off-line mission data systems (e.g., command
mgmt., S/C mission and science planning &
scheduling, guidance & navigation, network
scheduling)

Science data systems
including data processing,
archival, distribution,
analysis & info mgmt.

Embedded spacecraft, instrument
and hardware component
software

End-to-end data systems engineering of mission systems

Real-time ground mission data systems
for spacecraft integration and on-orbit
ops (e.g., S/C command & control,
launch and tracking services)

7/26/05 4

LOGO.049

Different Domains of Software Each Reflect A
Different Emphasis

Flight Software
• driven by limited S/C life, asset survival, &

mission science program
• continuous critical real-time ops, e.g.

attitude control, H&S monitoring
• fixed & constrained environment
• minimize risk with a never fail mindset
• constrained maintenance opportunities

Mission Control Ground Systems
• driven by limited S/C life, asset health, and

observatory user demands
• episodic real-time & near-time ops, from

command uplink to system state evaluations
• open to needs based augmentation
• risk adverse with a fail soft/over mindset
• full shadow maintenance capability

Science Data Management & Data
Processing

• data retention & integrity driven
• near-time and later ops, from raw archival

to signature calibrations and analysis
• flexible & extendable environment
• data fail soft mindset
• - shadow mode and add-on maintenance

Science Data Dissemination
• science evolution & user driven
• near-time and later ops
• large user communities
• evolving user interfaces & access demands
• timely data delivery mindset
• shadow mode and add-on maintenance

… Domain Tailored Development & Qualification Approaches

7/26/05 5

LOGO.049

GSFC Project Life-cycle

NASA
Phases

Project
Life Cycle

Phases

Formulation Software Development S/C Integration & Test Operations &
Maintenance

IMPLEMENTATIONFORMU-
LATION

Launch

APPROVAL

Project
Timeline

Flight SW

Mission
Control
Ground
System

Science
Data

Capture/
Distrib.

IOC
Contact
IV&V OCR 1st

CPT
SRR

STRR SW
Launch

Readiness

Acc.
Test

PDR

SRR PDR

CDR Box
I & T

CDR
SW mgt

(product)
plan

Test
Plan

S/C
I & T

SRR PDR CDR 1st
I &T
build

Last
Pre-launch

Delivery
(~L-120)

Acc.
Test

SRR PDR CDR SIPS Int.
I & T build

ICD
updates

SW Launch
Readiness

Acc.
Test

7/26/05 6

LOGO.049

Agenda: Formulation Phase

• Key Documents and Deliverables
• Mission Software Architecture & Requirements
• Acquisition
• Cost estimation
• Software related trades

7/26/05 7

LOGO.049

Key Documents / Deliverables

• Cost & Schedule Estimates
– Input to SW management plan/product plan

• Flight and ground software requirements
• Interface requirements documents
• System operation concept
• Trade studies
• Engineering analyses
• NEW! Software Assurance Classification Assessment & Report

– New requirement defined by NPR 7150.2
– Prepared by Project, independent assessment by Software

Assurance

7/26/05 8

LOGO.049

Flight
Software

#1
Mission and Project Requirements

Spacecraft, Instruments, Operations, Performance
Schedule, Funds

#2
Mission Systems Engineering

Flight Hardware Redundancies
 Onboard Autonomy

Onboard Failure Handling Philosophy #8
Special Hardware/Software I&T Reqmts.

Direct ground commanding of flight hardware

#7
FSW Test, Maintenance &

Remote Troubleshooting Strategies
Diagnostics, Flight Database, Loads, Dumps

#9
Pre-launch and Launch Reqmts.

Launch-unique Configurations
Launch Vehicle Separation

In-orbit Sun Acquisition

#3
Guidance, Navigation & Control

GN&C Hardware Decisions, Specs. & ICDs
Control Modes, Control Algorithms,

Control Options

#6
Electrical Subsystems

Flight Data System Architecture
Specs. and ICDs

(RF, CPUs, memory, buses, data storage,
power)

#4
Science Instruments

Data Rates, Interfaces to s/c,
Data Handling, Data Processing,

Algorithms
Event Handling

#5
Science & Mission

Operations
Data Flows

Planning/Scheduling
Ground Contact Strategies

Flight Software Requirements Drivers

7/26/05 9

LOGO.049

Simplified Flight SW Architecture

Guidance,
Navigation,
& control

Command &
Data handling

Power system
electronics

Scientific
Instruments

HW Interface HW Interface HW Interface HW Interface

• Flight software applications
communicate across bus

• Each application has similar
architecture
– Layering limits

pervasiveness of change

Application component

System services

HW Interfaces

Application Architecture

7/26/05 10

LOGO.049

What’s Complex About Flight Software?

• Schedule Compression
– Requirements & Operations Concepts mature late

• Flight SW is more tightly coupled to hardware than ground SW
• Can’t finalize requirements until flight hardware is fully characterized

– Major Demands during I&T and Launch Preparations
• Software’s flexibility is both a blessing and a curse

– FSW can often accommodate late requirements changes or
compensate for hardware problems during I & T or on-orbit
if and only if one plans the sufficient funds for testbeds,
well defined regression tests, and staff

• Under full cost accounting, contingency funds must be planned at the
beginning of the project; changes are not “free” anymore.

7/26/05 11

LOGO.049

SDO Electrical Architecture

Multiple processors, buses and interfaces

ACE SDN
B
C

R
T

1553
Bus

28V Power to ACS sensors,
actuators &heaters

Thermistor
s,
HGA
sensors

to S-
Band

IRU

Propulsion

R
T

28V Power to ACS sensors,
actuators & heaters

DC-DC Converter

R
T

Battery

P
S

E
 S

D
N

B
at

te
ry

 M
o

d
u

le

3
O

u
tp

u
t

M
o

d
u

le
s

P
S

E
 S

D
N

D
C

-D
C

 C
o

n
ve

rt
er

R
T

D
ep

lo
y

C
ir

cu
it

s

28V
power

28V
power

ST #1

ST #2

R
T

R
T

R
T

R
T R

T

R
T

CSS

CSS

Engine Valve
Driver boards

RWA I/O

ACE SDN

RWA I/O

Prop Pyro board

Engine Valve
Driver boards

DC-DC Converter

D
C

-D
C

 C
o

n
ve

rt
er

Gimbal Interface

DC-DC Converter

28V
power

Pwr Switching

DC/DC Converter

Bulk Memory &
DC/DC Converter

S/C Processor

R
T

Pwr Switching

3
O

u
tp

u
t

M
o

d
u

le
s

S
o

la
r

A
rr

ay
 M

o
d

u
le

Solar
Array

S
o

la
r

A
rr

ay
 M

o
d

u
le

Solar
Array

PSE

ACE A

ACE B

GCE
CDH A

RW #1

RW #3RW #2
RW #4

AIA

AEB
4 Optics
& CEB

GT’s

HMI Inst Electronics

HMI
HMI Optics

& CEB

EVE IEM
(incl. SDN)

EVE

MEGS

ESP

DC-DC Converter

Power Switching

Uplink/Downlink
S Band SDN

High Speed
Data Ka Band

H/W
decoded

cmds

28V Power to
Gimbal drives,

Instrument Module
thermal control

Ka
XMTR A

Ka
XMTR B

from Ka
Comm B

Waveguide
Switch

to High
Gain

Antenna
e

Synchronous
Serial Bus

to Up/Down B

R
T

to
Ka- Band

from
Instrumen
ts

DC-DC Converter

Housekeeping SDN

Gimbal InterfaceR
T

B
C

R
T H/W decoded

cmds

Uplink/Downlink
S Band SDN

28V power to SBC, Ka
Comm, S XMTR

DC-DC Converter

DC/DC Converter

High Speed
Data Ka Band

Bulk Memory &
DC/DC Converter

S/C Processor

R
T

Pwr Switching

Housekeeping SDN

CDH B

Pwr Switching

S
XPNDR A

S
XPNDR B

3 dB
Hybrid

to
Omni

s

from S
Comm A

Synchronous
Serial Bus

to
Up/Dow
n
A

Power Switching

Prop Pyro board

7/26/05 12

LOGO.049

Ground Software Requirements Drivers:
Mission Operations Requirements

• Ground software is integral to testing as well as operations
• Spacecraft complexity

– “Observatory class” spacecraft with multiple instruments,
and large telemetry/command databases, usually require
more complex ground systems than “explorer” class
spacecraft.

– Highly constrained flight data system resources (CPU,
memory) increases ground system complexity, especially in
the area of planning & scheduling

– Spacecraft with lower degrees of redundancy and autonomy
usually require more complex ground systems.

7/26/05 13

LOGO.049

Mission Control Ground System:
Simplified MOC Architecture

“Offline”
Applications

Flight Dynamics
System

CMS/P &S

DATA
SERVER

Real Time
Applications

Real-time
Flight dynamics

T & C system

Trending/
Plotting

Ground or
Space network

• Main MOC applications
– Telemetry & Command system
– Flight Dynamics
– Command Management,

including Planning &
Scheduling

– Trending

• Level 0 processing (LZP) of
science data is moving to the MOC

7/26/05 14

LOGO.049

Ground Software Requirements Drivers:
Science Data Processing Requirements

• Mission Science Requirements/Instrument observation
requirements
– Instruments with targeted observation needs, tight pointing

requirements introduce complexities into
planning/scheduling system.

• Data rates
– Very high (10-100’s Mbps) average and peak downlink rates

require custom hardware/software systems to support
• Data Latency and completeness requirements

– In general, as data latency decreases, and data completeness
requirements increase, ground system complexity increases

7/26/05 15

LOGO.049

Science Data Processing:
Level Zero Processing

Data Set
Preparation &

Delivery

Time ordering
by source

Removal of
redundant data

Create quality
and accounting
data by dataset

Electronic delivery
to customers

DATA
SERVER

Front End
Processing

Ground or
Space network

Real Time TLM
Receipt

Removal of
communication
artifacts

Packet extraction
& storage

Q/A

Raw Telemetry

CCSDS packets

Q/A data

Assembled Data Sets

CCSDS packets

Q/A data

• Level zero processing creates data
sets of CCSDS packets, separated
by data source, from raw downlink

• CCSDS standards minimize need
for mission-specific SW

• HW architecture needed for LZP
dependent upon mission data rate
– Smaller missions (< 1 Mbps on

average) can perform front end
processing and data set
preparation using workstations

– Larger missions (e.g, EOS,
SDO) require special purpose
VLSI equipment and dedicated
high-speed computers

16

LOGO.049

Developing Requirements in GSFC Science
Environment

• Collection of independent researchers who explore a wide variety of
scientific disciplines
– Generally small focused teams; limited resources
– Requirements manager is part-time role of another full-time position

• Most requirements are gleaned in informal settings, particularly through
workshops and individual discussions

• No “one size fits all”
– Requirements engineering and development methodologies for one

project will be very different on another
• Most projects have some way to adjust for change

• Each project has some form of documentation; not all projects have ways of
tracing requirements

• COTS tools are desirable, but not affordable

7/26/05 17

LOGO.049

What’s Complex About Ground Systems?
 Mission Control Ground Systems

• Real-time ground system components often have high reliability,
1 minute restoral-of-service requirements
– May not be running continuously, but needs to be reliable

during contact time.
– Significant test time needed to ensure requirements satisfied

• Must be highly automated/support unattended operations
– Required to ensure reasonable operations costs for missions

• Application & operations complexity
– E.g. flight dynamics for constellation missions

• Changes late in lifecycle (I & T or operations) are quite common
– Usually cheaper to change & test ground than flight system.

7/26/05 18

LOGO.049

 What’s Complex About Ground Systems?
Level Zero Science Data Processing (LZP)

• High data rates (10s – 100s Mbps) and low delivery latency (< 2-3 hours)
requirements drive architectural complexity
– Special purpose hardware/multi-CPU platforms needed
– Reduction in ability to re-use previously developed software

• Number of data sets created per day
– Function of the number of sensors on-board spacecraft, and timespan per

data set
– As the number of data sets created increases, quality/accounting and data

set management/delivery software complexity increases
• “Compromises” to accepted telemetry standards (CCSDS)

– Mission-unique software development required if CCSDS standards are
not rigidly adhered to in flight system.

7/26/05 19

LOGO.049

 What’s Complex About Ground Systems?
Science Data Processing Beyond LZP

• Issues in further capturing, processing and archiving science data, esp. at
instrument level
– Numerous components & interfaces involved - many stages of processing
– Components may involve execution of scientific codes at multiple sites

using heterogeneous hardware platforms & operating systems
– Each stage may involve different teams of developers
– Very different quality standards may exist -- many science data

processing codes developed by the scientists themselves
– Factors to consider: Real time data needs, Science data parameters,

Metadata standards, Science data format, instrument calibration,
instrument specific processing

• Key to success is having robust interfaces between components
– Interface control documents are critical
– Must coordinate activities among teams

7/26/05 20

LOGO.049

Ground System Architecture: GLAST

GSFC

GLAST

White Sands Complex

TDRS

Ground Stations

e.g. Wallops, MILA, USN Mission
Operations

Center

GLAST
Science
Support
Center

GSFC

GSFC

Launch
Site

KSC

Gamma-Ray
Coordinates

Network

GSFC

GBM
Instrument
Ops Center

MSFC/NSSTC

LAT
Instrument
Ops Center

SLAC

Spacecraft
I&T

Facility

Spectrum Astro

HEASARC

GPS

RT HK Telemetry
Command Data
HK Data Dumps

RT HK Telemetry
Alerts

Sci & HK Data Dumps
Command Data

GPS Timing &
 Position Data

TLM: Ku-band @ 40 Mbps
 S-band @ 1,2,4,8 kbps
CMD: S-band @ .25, 4 kbps

TLM: S-band @ 2.5 Mbps
CMD: S-band @ 2 kbps

T&C Data Flows

Burst Alerts

Test & Sim Data
Sustaining Eng Data

Level 0 Data
Contingency Cmd

As-Flown Timeline

Level 0 Data
Observing Plan

ToO Orders
As-Flown Timeline

Level 0 Data
 Contingency Cmd
 As-Flown Timeline
 Burst Alerts

Level 1/2 Data
LAT Commands/Loads

Level 1/2 Data
 GBM Commands/Loads

Archive
 Data

FDF

GSFC

Orbit Support

Science
Community

Science
Products

GCN Notices

7/26/05 21

LOGO.049

Mission Control Ground System:
GLAST MOC Architecture

CMD &
TLM
DB

GN

SN

FDF/
NORAD

GSSC

Stored
Cmd
Loads

TLM
Archive

Trend
Data

GLAST MOC Software Architecture Overview

File: SW Arch Block
Diagram
Date: 12/01/03
Author: MJM

BAP

Contact
Schedule

Muxer

Mission
Planning

MPS

STK
Automation

STK

Science
Cmd

Timeline

TLM & CMD
processing

ITOS

Automation &
Control

AMAC

Trend &
Analysis

DTAS

Frame
Accounting

Timeline
Monitor

On-Call
FOT/SOT

Anomaly
Detection &
Notification

SERS

Dumps
/Loads

FSW
Maint.

S/C bus &
IOCs

Remote
Users

IOCs

GSSC

Web Server

SN sched
SWSI

GN SN

Flight Dynamics

Mod. Swift S/W

GOTS

Mod. GOTS

COTS

New Glast S/W

Attitude
Dependent

TDRSS
Scheduling

Science
Input

Processor

Extensive COTS & GOTS usage in MOC

7/26/05 22

LOGO.049

“Acquisition” is Used in a Variety of Ways

• Rapid Spacecraft Development Office (RSDO) missions
– Key issue is whether catalog components cover requirements

• Contracted development
– SW as an independent contract or as part of system contract

• Need sufficient deliverables to manage project
• Can be some or all of the different types of software for a mission
• “COTS” often used to describe this type project; but contracted development

includes the services needed to configure COTS
• Purchase of COTS software for use on in-house software development

– Different activities when developing software using COTS
– Maintenance and upgrade issues

Best Practice: Designate a Software Manager to assess the Project's scope and to
tailor the acquisition requirements

7/26/05 23

LOGO.049

Cost Estimation:
Rules For Ballpark Development Cost Estimation

• Provided by experienced software managers
– Some examples

• Spacecraft flight SW: 50-80 staff years (MAP was 75)
• Mission Control Ground SW: Great Observatory 60-80 staff years, Small

Explorer 25-35 staff years
• General approach

– Comparison with previous missions
– Adjust based on technical & management risk factors
– Example: Flight Software Branch feature-by-feature complexity

estimation
• Experienced developers rate complexity of each feature using previous

missions as guide
• Rationale for ratings should be documented
• Scores assigned to complexity correlate with effort

7/26/05 24

LOGO.049

Cost Estimation:
Causes of Flight SW Cost Growth Explained

• Planning
– Specific Project pressures to reduce cost estimates due to cost constraints,

in some instances never allowing a true estimate to be baselined
– Post-PDR mandatory cost reductions across the board
– Unrealistic dependencies within delivery schedule (e.g., inputs to reqts. not

provided as scheduled, hardware not available as scheduled)
– Planning to reduce perceived overhead doesn’t pay off

• Minimized production or review of documentation
• Minimized formal and informal review activities

• Requirements
– New requirements often levied in late mission design or I&T phase, as

systems personnel become more knowledgeable
– Incomplete requirements
– Development and test ramifications are not fully understood

7/26/05 25

LOGO.049

Cost Estimation:
Causes of Ground SW Cost Growth Explained

• Planning
– Project pressure to reduce overall cost estimates
– COTS capabilities not functioning as planned/advertised

• Requirements
– Maturity of requirements limits accuracy of preliminary cost estimates
– Disparity in completeness of functional requirements (e.g., telemetry and

command requirements are often well understood, while science
processing requirements are left incomplete until late in mission lifecycle)

• Testing
– Insufficient emphasis on test plan completeness
– Application of additional testing as primary risk mitigation

• Staffing
– Launch delays result in funding and maintaining “marching army”
– Lack of adequate dedicated staffing early in project lifecycle

7/26/05 26

LOGO.049

Software Related Trades

• Selection of Ground System (telemetry & command)
– Issue: GSFC GOTS are designed with flight SW test in mind, many COTS

ground systems are not
• Hardware architecture of flight data system

– Issues: sufficient hardware capacity, complexity of testing distributed systems,
capabilities of operating systems, compilers and related tools

• Sufficient testbed resources
– Issue: Relying on flight hardware as a testbed is not sufficient. What is needed is

a full ETU version of all Flight Data System components (high fidelity testbed).
• Allocation of functionality between flight & ground systems

– Issue: Many operations activities can be performed either by flight or ground
segment. Assigning functionality to flight software in a prudent manner will
decrease complexity of ground software development and operations

• Interface compatibility between ground system components
– Issue: Standard interface methods (data formats, frequency of message exchange,

etc.) do not currently exist between key ground system components.
• Degree of onboard science data processing

– Issue: May be able to exploit more capable flight hardware and operating
systems

7/26/05 27

LOGO.049

Formulation Phase:
Summary of Best Software Practices

• Software team needs to be fully integrated into the formulation
process

• Plan for sufficient development tools, testbeds & simulators
• Plan cost growth of 20% from PDR to launch readiness
• Question reuse assumptions, evaluate COTS software carefully
• Make sure RFP is complete with respect to deliverables, metrics,

and development processes
• Start software development with attention to

– Organizational structure
– Software management plan / product plan

7/26/05 28

LOGO.049

Agenda: Software Development Phase

• Key Documents and Deliverables
• Software Development Considerations

– Software Development Life Cycle
– Reviews, Inspections & Walkthroughs
– Testing Considerations
– Assurance Considerations

• Managing Software Development
– Project Planning
– Risk Management
– Project Monitoring and Control
– Post-development support

• Technology Development
• Improvement Initiatives

7/26/05 29

LOGO.049

Key Documents / Deliverables (More Than Code)

• Software life-cycle products include
– Product Plan / Software Management Plan (may include Configuration

Management Plan, Risk Management Plan, Security Plan, or they can be
separate documents)

– Software Requirements Document (SRD)
– Interface Requirement Document(s) (IRDs) & Interface Control Documents

(ICDs)
– Software Quality Assurance Plan
– Software Requirements traceability matrix
– Functional and Detailed Design Documents
– Source code
– Software Test Plan(s)
– Test and Verification Matrix
– Software User’s Guide
– Release Letters
– Delivery, Installation, Operations, and Maintenance Plan(s)
– Software Safety Plan (can be part of System Safety Plan or separate)
– Derived planning information (includes build plans allocating functions to build,

progress tracking spreadsheets)

Boldface indicates CCB control

7/26/05 30

LOGO.049

Software Development Life Cycle: Description

• Most projects use iterative life-cycles, but all show some form of
“requirements-design-build-test.”

• Most life-cycles are depicted as GANTT-type schedules.
• Software life cycles have intermediate milestone reviews and deliverable

products that provide completion and coordination points with other project
elements or other sub-processes
– Build: A version of a system or component that incorporates a specified

subset of the capabilities that the final product will provide.
– Release: a version that is made available for use outside the development

team
• Alternate life-cycle models include prototyping, spiral modals, and agile

methods (such as XP). These models are useful when used correctly, but they
can be misused to circumvent sound software development practices; SW
lead can advise on their use

7/26/05 31

LOGO.049

Cleanup Builds...

Build 1 Test

Build n Test

Build 0 Test

1

Mission SIMs

Build 0 ->

S/C
SRR

Ops
Concept
Review

S/C
PDR

S/C
CDR

Start
Box
I&T

Start
S/C
I&T

End
S/C
I&T LaunchProject

Milestones

FSW
Milestones

FSW
SRR

FSW
PDR

FSW
CDR

FSW
Acceptance

Test
FSW
STRR

FSW Team
Development,
Unit Test, &
Integration
onto H/W

FSW
Specialist
Testing

n

C

0

Build 1 ->

Build n ->

Cleanup Build(s) ->

FSW
Test
Plan

IT

Build 1 R/D/C/U IT

Build n R/D/C/U IT

Cleanup Build R/D/C/U IT

Build 0 R/D/C/U

SIM Prep./Dry RunsEnd-to-end Ops. Testing ->

Build 0 ->

Build 1 ->

Build n ->

Cleanup Build(s) ->

1st
CPT IOC

FSW
Launch

Readiness

C

ETU Testbed

Breadboard Lab.

Prep.

Prep.

Prep.

Prelim. Design Critical DesignRequ. Analysis

FSW Team
Requirements & Design

Regression Tests...

.

.

.

.

.

.

FLIGHT SOFTWARE LIFE-CYCLE
(In-House Missions)

System Test PreparationSystem ValidationTest ->

.

.

.

.

.

.

Maint.

(R/D/C/U = Requirements Analysis/ Design/ Code/ Unit-test)

(IT = Build Integration Test)

Regression Tests...System Test

FSW Maintenance Prep.

Software Development Life Cycle:
Software Life Cycle in Project Context

Flight SW example, ground is similar

7/26/05 32

LOGO.049

Software Development Life Cycle:
Software Build Planning Considerations

• Integrate early, integrate often
– Plan builds at 3-6 month intervals
– Testable increments of functionality
– Early detection of interface issues
– Early validation of development and test practices

• Consider hardware & software test schedule dependencies
– Ground system & testbed delivery schedule for flight SW
– Meet schedule to support flight data system box testing

• Consider risk
– Put higher complexity software in early builds
– Defer incomplete or unstable requirements to late builds
– Have early flight SW build with full closed-loop operations
– Focus on interfaces between COTS or GOTS products

7/26/05 33

LOGO.049

Reviews, Inspections & Walkthroughs:
Milestone Reviews

• Purpose
– Baseline key work products
– Present budget, schedule & risk status

• Estimates should be updated based on available information
• Expect cost growth of 20% between PDR and launch readiness

• Hold software review after corresponding system level review
(SRR,PDR,CDR)
– Flight SW depends on system & HW architecture decisions
– Ground SW depends on command & telemetry definitions

• Preparing for review helps
– Team understanding of the product being developed
– Communications within team and with other groups

7/26/05 34

LOGO.049

Reviews, Inspections & Walkthroughs:
Inspections & Walkthrough Processes

Software Inspections & Walkthroughs meet GSFC
Engineering Peer Review Requirements (GPR8700.6)

• Inspections are concerned with discovering defects; Walkthroughs are
concerned with team reaching common understanding of product (e.g.
requirements)

• Participants are: Author of requirements, design, code, test plan, Peer
reviewers from development or test team, collaborators from relevant
disciplines, quality assurance personnel

• A study of inspections at NASA (2001) interviewed project personnel and
found: Improved communication between developers, training benefit, defect
detection

• Early defect detection yields cost savings (JPL data)
– Inspections cost 0.7 hrs / defect,

testing ranges 5 to 18 hours / defect
– Inspections caught over 70 per cent of defects

7/26/05 35

LOGO.049

Testing Considerations:
Flight Software Test Activities

• During Software Development
– Developers perform unit and build integration tests
– Test team performs requirements driven build verification tests, and

operational scenario driven system validation tests.
– Acceptance test is last run of full system test suite.

• Flight SW is ready to run in operational environment (on spacecraft)
• Complete by the first Comprehensive Performance Test (CPT)

• After Software Release
– Make changes in response to non-conformance reports
– Run regression tests

• Regression tests involve unit, build, and system test activities
• Test change, subset of previous tests to uncover new errors in SW

• Need breadboards for integration of first build; need Engineering Test
Units (ETUs) for subsequent builds

7/26/05 36

LOGO.049

Testing Considerations:
Ground Software Testing

• Test environment
– Key interfaces need to be tested early and thoroughly

• Is correct data being passed between facilities?
• Is the system performance meeting requirements?

– Target computer is often same as development system
• Subsystems can often be tested thoroughly on development machines
• “Soft real time” performance requirements

– Acceptance tests still must reflect operational environment
• Flight operations team and science teams operating instruments

are key to successful testing & deployment of ground system
– Start FOT training early as initial builds are delivered
– Need operator feedback on procedures, user interfaces

7/26/05 37

LOGO.049

Assurance Considerations:
Comparing Software Quality and IV&V

• Provides Center-level services
• Focuses on ALL Project software
• Emphasizes compliance to

standards and procedures
• Reviews, monitors and audits all

Project processes and products for
completeness and accuracy

• Matrixed to the Project as part of
the Project Team and provides
daily insight/oversight

• Reports to Project and Center
Director through OSSMA

• Provides Agency-level services
• Focuses on MISSION CRITICAL

Project software
• Emphasizes completeness and

correctness of the product
• Reviews, analyzes, and provides

in-depth evaluations of life cycle
products which have the highest
risk

• Independent from the Project and
provides analyses and evaluations
per IV&V priorities

• Reports to Project, GPMC, and
NASA Headquarters

Software Quality IV&V

7/26/05 38

LOGO.049

Assurance Considerations: Software Safety

• Software Safety
– Entails identifying, analyzing, tracking, mitigating and

controlling software hazards and hazardous functions
(data and commands) to ensure safer software operation
within a system

– Done as part of system safety analysis
– Software is safety critical even if there is hardware backup
– Adheres to the requirements specified in the NASA Software

Safety Standard, NASA-STD-8719.13B
– Safety “Litmus Test”, found in 8719.13B, will help in

determining the criticality of the software and its contribution
to the safety of the system

Software Safety is a function of System Safety!

7/26/05 39

LOGO.049

Project Planning:
 Software Product Plan

• All code 580 in-house software development activities shall have a Software Product
Plan
– Product Plan may serve as SW Management Plan

• ISO 9000 requirement – equivalent of Hardware Work Authorization (WOA)
– Outline for the plan is on the web at http://isd.gsfc.nasa.gov/iso9k/iso9001.htm
– Major areas of the plan:

• Customer Agreement
– Overview of goals & objectives for software product
– Source documents for software requirements
– Resources required (CS labor, contractor labor, other costs)
– Receivables & deliverables
– Software team placement & reporting relationships
– Acceptance criteria (pointers to acceptance test plans)
– Customer training
– Post delivery maintenance

• Management Approach
• Technical Approach
• Product Assurance

7/26/05 40

LOGO.049

Risk Management

• Inherent uncertainty in estimation methods can be handled by producing worst, most
likely and best case estimates

• “I forgots” can be handled using standard processes and products (standard WBS,
checklists, document templates, cost estimation procedures,…)
– Example: Is SQA and IV & V in budget?

• “Unknown unknowns” can be handled by keeping a management reserve
– Example: late SW requirements change as HW workaround

• Look at what problems have occurred in the past
– For example, Flight Software Branch risk tool includes a list of “generic risks”

based on previous projects; flight software lead can select which ones apply
• “Known unknowns” can be handled by identifying, analyzing and mitigating risks.

Examples:
– Late and changing requirements
– Compressed schedule
– Late hardware deliveries / untested hardware
– Inadequate test beds
– Inadequate COTS -- buggy, doesn’t cover requirements
– New technology

7/26/05 41

LOGO.049

Project Monitoring and Control:
Is There Enough Information to Judge?

• Are metrics vague and high level, or are objective measurements
being used?
– “we are 90% done”
– Good metrics provide objective data to judge progress

• Do status reports always sounds the same?
– “we are 90% done”
– There are specific alarm signs one should look for

• Requirements, management, process, schedule

The Big Question
“Why do you think you will be able to deliver on time? ”

7/26/05 42

LOGO.049

Project Monitoring & Control:
Required Metrics

• Progress tracking data
– Includes cost, staff effort & scheduled completion of work
– Track planned progress against actual performance

• Defect data
– Open, closed, and total number of discrepancy reports
– Number of defects found in inspections or walkthroughs
– Effort spent in inspection, walkthrough & testing activity

• Number and impact of requirements changes
• Current & projected use of system resources

– Main memory, secondary storage, bus & CPU cycles,…

7/26/05 43

LOGO.049

Each module (165) assigned 4 points: 1-designed; 2- coded; 3-inspected; 4-integrated

0

100

200

300

400

500

600

700

1/12 1/26 2/9 2/23 3/8 3/22 4/5 4/29 5/3 5/27

P
oi

nt
s

Total Planned Total Actual Baseline Points

Sample 5-month Project

Date

Project Monitoring & Control:
Progress Tracking for Subsystem Development

7/26/05 44

LOGO.049

Project Monitoring & Control :
Defect Reports and Product Quality

RIDs and Software Problem Reports (SPRs)

0

100

200

300

400

500

600

Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec Jan Feb M
ar Apr

M
ay Ju

n Ju
l

Aug Sep Oct
Nov Dec Jan Feb M

ar Apr
M

ay Ju
n

Total Software Problem Reports (SPRs)

Closed Software Problem Reports (SPRs)

Open Software Problem Reports (SPRs)

Open Review Item Discrepancies (RIDs)

XYZ CDR Review

ABC PDR Review
ABC CDR Review

7/26/05 45

LOGO.049

Project Monitoring & Control :
Alarms to Monitor

• Ask questions related to potential problems
– Requirements, management, process or schedule
– Each alarm has associated corrective actions

• Consequences of ignoring alarms:
– Quality is sacrificed

• “we’ll cut testing to get back on schedule”
• Cut out walkthroughs & inspections to keep earned value on track

– Progress should be recorded only on completion of steps
– Work is deferred, costs soar

• Moving to later builds will require resources not in original plan
– Major staff increases to meet schedule

7/26/05 46

LOGO.049

Project Monitoring & Control: Alarms

• Is there a mismatch between requirements and budget?
• Are the requirements mature and stable?
• Do you have the right personnel?
• Is there sufficient communication with software teams?
• Are processes being executed correctly or evaded?
• Is the development team suffering from schedule compression?

– Are builds being combined to “reduce overhead”? Are capabilities being moved
to later builds? Are early build mature enough to support implementation of later
ones?

– Are hardware and algorithms needed by software team delivered on time?
– Do developers have time for all activities, including support for other groups?
– Is planned documentation being produced?

• Is the test team suffering from schedule compression?
– Are testbeds delivered to meet the test schedule?
– Are multiple builds being tested simultaneously?
– Are planned tests being cut out to match resources?
– Are the test procedures and expected results stable?
– Does test team have enough time to analyze results?

7/26/05 47

LOGO.049

Project Management Considerations:
Summary Recommendations for Development

• Recognize that there is more to software than code
• Monitor the same items for contracted and in house development
• Allow time in schedule for reviews, inspections & walkthroughs

– Problems detected early are less costly to fix
– “Testing in quality” is far more expensive; not an appropriate

approach to software development
• Have frequent, testable builds with incremental functionality

– Help find interface / integration problems early
• Keep estimates up to date

– Cost & schedule
– Underlying assumptions

7/26/05 48

LOGO.049

Post-Development Support:
Post-Acceptance Deliverables and Activities

• Once software is accepted and delivered, discrepancies and
changes shall be tracked using NCRs.

• Support of delivered software through in-orbit checkout
– Spacecraft Integration & Test
– Mission Simulations
– Launch & early orbit checkout

• Software maintenance (sustaining engineering post-IOC)
– Identify, prioritize, design, implement & test changes
– Regression testing

Acceptance Tested Software is ready
to run in operational environment

7/26/05 49

LOGO.049

Post-Development Support:
 Key Recommendations

• Schedules and dependencies
– Flight SW acceptance test should be complete before first

spacecraft Comprehensive Performance Test
– Ground elements should be ready in a similar time frame

• Plan late-phase resources at the start of the project
– Software team support for flight operation, hardware I & T,

and observatory/payload I & T teams.
– On-orbit sustaining engineering
– Licenses for and upgrades to COTS products
– All software will need maintenance.

• Maintenance must be included in planning.
• What and how much depends on the use of the software.

7/26/05 50

LOGO.049

ISD Technology Research & Development

• Goal is to infuse new technologies and/or new approaches into
mission control and science systems.

• Ideas are generated through
– Strategic technology planning
– Meeting with Goddard missions and scientists
– Review of NASA Strategic Plans

• Potential technologies are found via literature research,
conferences, educational opportunities, and market awareness.

• Most efforts are funded on a yearly basis. The goal is that at the
end of each funding year a useful prototype will be completed.

• Teams are small, normally 1 to 3 people.

7/26/05 51

LOGO.049

ISD Technology R & D Process

• Review technology proposal calls and develop proposals to respond to those
calls
– Calls are both internal and external to Goddard
– Submitted proposals normally have a potential customer associated with

the concept who has agreed to beta test the developed software
• Upon proposal selection develop project plan in accordance with funding

source requirements.
• Development plan uses the iterative prototyping approach

– Normally projects have a quarterly builds that are reviewed by customer
advocate.

– Customer feedback is fed into the design phase for the next build.
• Projects have bi-monthly meetings with branch management to ensure that

they are staying aligned with NASA strategic objectives.
• Most proposal funding sources require yearly project reporting.

7/26/05 52

LOGO.049

ISD Technology Projects

• Adaptive Sensor Fleet (ASF) is a supervisory control system that is designed to use a
collection of heterogeneous robotic platforms to optimally perform observations of
dynamic environments driven by high-level goals.

• Instrument Remote Control (IRC) is a cross-platform, distributed control framework
for instrument that provides remote configuration, control, monitoring, and analysis

• Multipurpose Exoterrain for Robotic Studies (MERS) is a facility available to test
robots, sensors and advanced exploration concepts in a semi-realistic environment

• Science Algorithm Visualization and Networking Tool (SAVANT) is a graphical tool
for creating "visual programs" by assembling and executing flowcharts (graphs) of web
services.

• Science Goal Monitor (SGM) is a tool used to improve both the science data
acquisition and data quality of a mission by automatically responds to science-related
events.

• Virtual Feel is a prototype tool set that will accomplish the typical
assembly/disassembly tasks needed for the Hubble Robotic Repair mission through a
new approach which will significantly reduce the risk of failure.

7/26/05 53

LOGO.049

Improvement Initiatives

• Process Initiative
– GSFC Software Process Improvement Project

• Point of contact: Sally Godfrey
• http://software.gsfc.nasa.gov

• Technology Initiatives
– Flight Software Reuse

• Point of contact: Jane Marquart
– GSFC Mission Services Evolution Center (GMSEC)

• Point of contact: Dan Smith
• gmsec.gsfc.nasa.gov

• What’s in it for Projects?
– Projects can leverage these improvement investments for

better, more cost effective systems.

7/26/05 54

LOGO.049

Improvement Initiatives:
Software Process Improvement

• Support of NASA Software Improvement Initiative
– GSFC response is the SPI Project, carried out by the Engineering Process

Group (EPG)
– ISD processes are the initial focus, as the division is responsible for the

majority of GSFC mission software
• ISD personnel lead the SPI Project and the EPG.

• GSFC SPI phases
– Phase 1 (FY02) -- pilot appraisals, EPG startup
– Phase 2 (FY03-07) -- staged process improvement

• All ISD mission software will be at CMMI Maturity Level 3 by the end of
FY07 (i.e. Software projects rely on organizational process assets to carry
out their work, achieving more consistent performance)

– Phase 3 (FY08 onward) -- sustain continuous improvement

7/26/05 55

LOGO.049

ISD Initiatives: Flight Software Reuse

• Object Model of Mission-independent Core FSW Elements
– Multi-mission FSW Requirements Analysis
– Separate mission-unique and common FSW Requirements
– Baseline Generic FSW Executive Architecture Definition

• Develop Common Architecture & Development Tool Set
– Make the tools satisfy FSW needs
– Improve FSW Documentation

• Validate, Measure Performance, Evaluate and Refine Re-use
• Train for re-use

Planned instead of ad hoc reuse

7/26/05 56

LOGO.049

ISD Initiatives:
GSFC Mission Services Evolution Center (GMSEC)

Traditional “socket-
based” system designs

require complex
interfaces and integration.

The GMSEC “Information
Bus” approach has allowed

some components to
integrate on the first try.

•Introduction
GMSEC was established in 2001 to coordinate ground
and flight data systems development and services at
GSFC.

•Goals
1. To simplify initial integration/development
2. To facilitate technology infusion over time
3. To allow for additional operations concepts
4. To establish a structure which can grow to enable

future GSFC missions

•Concepts
1. Standardize Interfaces – not Components
2. Middleware infrastructure w/ publish/subscribe
3. User Choices – GMSEC doesn’t decide which

products are best
4. GMSEC “Owns” the Architecture and Interfaces –

NASA AETD Branches still own their domain areas

Status
• Architecture developed in FY02; Lab established and

demonstrations held in FY03
• COTS industry has helped develop message standards,

see great advantages to GMSEC
• NASA ARC, MSFC, JPL and APL are interested in

collaborating with GMSEC approach

7/26/05 57

LOGO.049

Summary: To Strike Fear in the Heart …

• The often cited Standish Group 1998 Study on large software
projects in the late 1990s reported:
– 53% either delivered late or exceeded budget
– 31% were cancelled
– 16% were successful

• Failed projects average
– 189% of the original estimated cost
– 222% of original schedule
– 61% of original functionality

• Only 41% of IT managers believe there are fewer failures
now than five years previously!

7/26/05 58

LOGO.049

Goddard is not exempt from software problems…

• EOS Flight Operations Segment (FOS) control center
architecture
– Reuse and COTS less effective than expected
– Schedule metrics and requirements poorly defined
– Consequence: Terra launch delayed a year

• Flight systems: IRAC instrument software, EO-1 Command &
Data Handling Software
– Poor control over requirements
– Reliance on flight hardware as high fidelity testbed
– Late involvement of Flight Software Branch
– Consequence: 65% cost growth on EO-1, 245% on IRAC

7/26/05 59

LOGO.049

…but we generally do well, and we want to do
better still

• Over the 5 years to July 2002 GSFC held responsibility for well
over 25 missions or well over 125 mission critical SW elements

• GSFC has experienced 3 significant problems, computing to less
than a 2.5% significant problem rate:
– EOS FOS, EO-1 FSW, and IRAC FSW
– Each was significant and drew a lot of attention

• No GSFC software problem has directly contributed to in-flight
damage; to the contrary, software is routinely used to
compensate for problems on-orbit

• To further improve performance and to reduce hero mode
dependence, pragmatic improvement steps can be taken

If the process works…improve it

7/26/05 60

LOGO.049

ISD Recommendations for
Mission Success

• Involve software personnel from the beginning
– Software experts’ inputs improve cost estimates, trade studies,

and acquisition plans
• Produce a Software Management Plan / Product Plan

(SMP/PP)
– Make sure “Customer Agreement” is acceptable to all

• Follow the processes defined for the Project in the SMP/PP
– Cutting corners only helps you lose your way

• Track the software development against the plan
– Keep an eye on the potential alarm signs

